|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectkohonen.WTMLearningFunction
public class WTMLearningFunction
Winner Takes Most - algorytm where winnig neuron and neurons in neighboorhood
weights are changed according to the formula w(k+1) = w(k) + n *N(i,x)* (x-w) where
w(k+1) - neuron weight in k +1 interation
w(k) - neruon weight for k iteration
n - value of learning function factor for k iteriation
N(i,x) - value of neighboorhood function for i - specified neuron
x - learning vector od data
w - neuron weight
WTMLearningFunction
Field Summary | |
---|---|
protected LearningFactorFunctionalModel |
functionalModel
reference to function model |
protected LearningDataModel |
learningData
reference to learning data |
protected int |
maxIteration
max number of iteration |
protected MetricModel |
metrics
reference to metrics |
protected NeighbourhoodFunctionModel |
neighboorhoodFunction
reference to neighboorhood function model |
protected NetworkModel |
networkModel
reference to network model |
protected TopologyModel |
topology
reference to topology model |
Constructor Summary | |
---|---|
WTMLearningFunction(NetworkModel networkModel,
int maxIteration,
MetricModel metrics,
LearningDataModel learningData,
LearningFactorFunctionalModel functionalModel,
NeighbourhoodFunctionModel neighboorhoodFunction)
Creates a new instance of WTMLearningFunction |
Method Summary | |
---|---|
protected void |
changeNeuronWeight(int neuronNumber,
double[] vector,
int iteration,
int distance)
Change neuron weights for specified neuron number, iteration, input data vector and distance and distance to winning neuron |
void |
changeWeight(int neuronNumber,
double[] vector,
int iteration)
Change specified neuron weight |
protected int |
getBestNeuron(double[] vector)
Rerturn number of best neuron for specified input vector |
LearningFactorFunctionalModel |
getFunctionalModel()
Return function model |
LearningDataModel |
getLearningData()
Return reference to learning data |
int |
getMaxIteration()
Return maximal number of iteration |
MetricModel |
getMetrics()
Return metrics |
NeighbourhoodFunctionModel |
getNeighboorhoodFunction()
Return reference to neighboorhood function |
NetworkModel |
getNetworkModel()
Return network model |
boolean |
isShowComments()
Return information if learning process dispalys information about learning process. |
void |
learn()
Start learning process |
void |
setFunctionalModel(LearningFactorFunctionalModel functionalModel)
Set functional learning factor model |
void |
setLearningData(LearningDataModel learningData)
Set reference to learning data |
void |
setMaxIteration(int maxIteration)
Set max interation |
void |
setMetrics(MetricModel metrics)
Set metrics |
void |
setNeighboorhoodFunction(NeighbourhoodFunctionModel neighboorhoodFunction)
Set reference to neighboorhood function |
void |
setNetworkModel(NetworkModel networkModel)
Set network model |
void |
setShowComments(boolean showComments)
Set if comments durring learning process must be shown. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
protected MetricModel metrics
protected NetworkModel networkModel
protected int maxIteration
protected LearningDataModel learningData
protected LearningFactorFunctionalModel functionalModel
protected TopologyModel topology
protected NeighbourhoodFunctionModel neighboorhoodFunction
Constructor Detail |
---|
public WTMLearningFunction(NetworkModel networkModel, int maxIteration, MetricModel metrics, LearningDataModel learningData, LearningFactorFunctionalModel functionalModel, NeighbourhoodFunctionModel neighboorhoodFunction)
networkModel
- reference to network ModelmaxIteration
- max number of iterationmetrics
- reference to metricslearningData
- reference to learning datafunctionalModel
- reference to functional ModelneighboorhoodFunction
- reference to Neighboorhood FunctionMethod Detail |
---|
public boolean isShowComments()
public void setShowComments(boolean showComments)
showComments
- true if comments must be shown, false otherwisepublic void setNeighboorhoodFunction(NeighbourhoodFunctionModel neighboorhoodFunction)
neighboorhoodFunction
- reference to neighboorhood functionpublic NeighbourhoodFunctionModel getNeighboorhoodFunction()
public MetricModel getMetrics()
MetricModel
public void setMetrics(MetricModel metrics)
metrics
- metricspublic void setNetworkModel(NetworkModel networkModel)
networkModel
- network modelpublic NetworkModel getNetworkModel()
public void setMaxIteration(int maxIteration)
maxIteration
- max interationpublic int getMaxIteration()
public void setLearningData(LearningDataModel learningData)
learningData
- reference to learning datapublic LearningDataModel getLearningData()
public void setFunctionalModel(LearningFactorFunctionalModel functionalModel)
functionalModel
- functional learning factor modelpublic LearningFactorFunctionalModel getFunctionalModel()
protected int getBestNeuron(double[] vector)
vector
- input vector
protected void changeNeuronWeight(int neuronNumber, double[] vector, int iteration, int distance)
distance
- distance to winning neuronneuronNumber
- neuron numbervector
- input vectoriteration
- iteration numberpublic void changeWeight(int neuronNumber, double[] vector, int iteration)
neuronNumber
- neuron Numbervector
- input vectoriteration
- iteration numberpublic void learn()
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |