|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use MetricModel | |
|---|---|
| kohonen | |
| metrics | |
| network | |
| Uses of MetricModel in kohonen |
|---|
| Fields in kohonen declared as MetricModel | |
|---|---|
protected MetricModel |
WTMLearningFunction.metrics
reference to metrics |
protected MetricModel |
WTALearningFunction.metrics
reference to metrics |
| Methods in kohonen that return MetricModel | |
|---|---|
MetricModel |
WTMLearningFunction.getMetrics()
Return metrics |
MetricModel |
WTALearningFunction.getMetrics()
Return metrics |
| Methods in kohonen with parameters of type MetricModel | |
|---|---|
void |
WTMLearningFunction.setMetrics(MetricModel metrics)
Set metrics |
void |
WTALearningFunction.setMetrics(MetricModel metrics)
Set metrics |
| Constructors in kohonen with parameters of type MetricModel | |
|---|---|
WTALearningFunction(NetworkModel networkModel,
int maxIteration,
MetricModel metrics,
LearningDataModel learningData,
LearningFactorFunctionalModel functionalModel)
Creates a new instance of WTALearningFunction. |
|
WTALearningFunctionWithTired(NetworkModel networkModel,
int maxIteration,
MetricModel metrics,
LearningDataModel learningData,
LearningFactorFunctionalModel functionalModel)
Creates a new instance of WTALearningFunction. |
|
WTMLearningFunction(NetworkModel networkModel,
int maxIteration,
MetricModel metrics,
LearningDataModel learningData,
LearningFactorFunctionalModel functionalModel,
NeighbourhoodFunctionModel neighboorhoodFunction)
Creates a new instance of WTMLearningFunction |
|
WTMLearningFunctionWithTired(NetworkModel networkModel,
int maxIteration,
MetricModel metrics,
LearningDataModel learningData,
LearningFactorFunctionalModel functionalModel,
NeighbourhoodFunctionModel neighboorhoodFunction)
Creates a new instance of WTMLearningFunction |
|
| Uses of MetricModel in metrics |
|---|
| Classes in metrics that implement MetricModel | |
|---|---|
class |
CityBlockMetric
City block metric return distance calculated by function: sum|x_i - y_i| for each element from inputs vectors, where x_i is first input vector element, y_i is second vector element. |
class |
EuclidesMetric
Euclides metric return distance calculated by function: sum[sqrt(x_i - y_i)] for each element from inputs vectors, where x_i is first input vector element, y_i is second vector element. |
class |
MinkowskiMetric
Minkowski metric return distance calculated by function: {sum[(x_i - y_i)^p]}^(1/p) |
| Uses of MetricModel in network |
|---|
| Methods in network that return MetricModel | |
|---|---|
MetricModel |
KohonenNeuron.getDistanceFunction()
Return reference to distance function |
| Methods in network with parameters of type MetricModel | |
|---|---|
void |
KohonenNeuron.setDistanceFunction(MetricModel distanceFunction)
Set distance function |
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||